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Algorithms for solving boundary-value problems and for computing temperature fields and thermal stresses are considered for 
a certain class of structures whose main element is a thin-walled shell of revolution subject to external pressure under general 
conditions of unsteady heat exchange with the environment. Within the framework of Meissner's computational scheme [1], a 
system of differential equations is obtained for the axisymmetric bending of arbitrary shells of revolution, using a linear coordinate 
along an arc of the meridian. For the joint and simultaneous solution of these equations, with a calculation of the temperature 
fields in meridional sections of the shell, the heat-conduction equation is obtained in a similar coordinate system with a curvilinear 
coordinate s along a generator and a coordination y along the normal to the shell surface. Algorithms, obtained using the finite- 
difference matrix double-sweep method [2-4], are proposed for the practical solution of boundary-value problems to compute 
the unsteady temperature fields and stresses. © 2004 Elsevier Ltd. All rights reserved. 

1. T H E  D I F F E R E N T I A L  E Q U A T I O N S  O F  T H E  B E N D I N G  O F  S H E L L S  
U N D E R  A X I S Y M M E T R I C  E X T E R N A L  P R E S S U R E  A N D  H E A T I N G  

A computation of the temperature stresses for shells of revolution under conditions of unsteady heat 
exchange with the environment involves the simultaneous solution of two boundary-value problems. 
One of them is formulated and solved to compute the temperature fields, but in order to compute the 
thermal stresses one has to determine the strains, internal forces and moments of elastic interaction 
of the elements of the shell when there is a non-uniform variation of the temperature over its thickness 
and generator. 

If it is assumed that the strains of the shell when there is an axisymmetric application of heat are 
non-flexural, the computational formulae for the meridional and circumferential stresses, o m and %, 
respectively, are obtained in the same way as for a thin-walled cylinder, i.e. 

h/2 
Etx 1 

~m(Y, s) = a~(y, s) = ~- -~(T . ( s )  - T(y, s)), Ta(S ) -~. t l  I T(y, s)dy (1.1) 
-hi2 

where T(y, s) is the distribution function of the temperature over the shell thickness and the meridional 
coordinate s at a given time t, y is the coordinate along the shell thickness, directed along the outer 
normal from a point on the middle surface, h is the thickness, la is the Poisson's ratio, c~ is the coefficient 
of thermal expansion and E is the modulus of elasticity. 

In the zones characterized by sudden or continuous, but very rapid, changes of temperature along 
the generator, and also in the neighbourhood of the fixed end and the boundaries of variation of the 
shapes and dimensions of the component shells, bending strains arise, if these are taken into considera- 
tion, the formulae for computing the stresses may be written in the form 

(Ym(Y' S) = ~ ' [ ' ~ ( T a ( S ) -  T(y ,  s ) )  + + ~.ds I1 O(s)  (1.2) 
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)ds 

Fig. 1 

o,(y ,s)  = ~ -~ (Ta( s ) -  T(y,s)) + { ' ~  + y --~-2 0(s) + ~t-~s (1.3) 

where O(s) is a function representing the angles through which the normal to the middle surface of the 
shell rotates during bending, and Nm and N~ are the meridional and circumferential internal forces of 
the shell. 

Thus, in order to determine the stresses, taking the bending strains into account, one must determine 
the internal forces and the function 0(s) representing the angles through which the normal rotates. The 
internal forces of the shell Nm and N~ may be expressed in term of the function of the shearing forces 
Qm(s). That is done using two equations. One of them is the equilibrium equation of the projections 
of all forces onto the axis of revolution of part of the shell cut out by a circumferential section. For 
shells closed at the vertex it has the form 

$ 

2~r(Nmsin0 + Qmcos0) + ~pcosO2nrds = 0 
0 

(1.4) 

where 0 is the angle between the normal to the shell surface and the axis of revolution, r(s) is the radii 
of the parallels of the middle surface andp(s) is the external pressure. 

The second equilibrium equation is set up for a small element of the shell cut out by two circum- 
ferential and two meridional sections, as shown in Fig. 1. The condition that the sum of projections of 
all forces onto the normal must vanish implies that 

1 d ( _  r) N,. N , + p  = 0 (1.5) 

where R1 and R 2 are the radii of curvature of the shell. 
Equations (1.4) and (1.5) can be used to determine the meridional and circumferential internal forces 

and to express them in terms of the external pressure and the shearing forces function V = R2Q m 
$ 

N._- otto,,,_  f,,rcoso  
- Rz f ( s ) ,  f ( s )  = s i n ' 0 o  

(1.6) 

N ~ d V ~zz 
- ds pR2 + f (s )  (1.7) 

These expression were derived using the relations r = R2sin0, ds = RadO. 
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Since the internal forces are determined from the equilibrium equation, it follows that the shearing 
forces function must satisfy the strain compatibility equation. To derive that equation, we write out the 
expressions for the strains of the middle surface and angle of rotation of the normal 

du + w w u u d w  
= - - ,  e~ = + ctg0, O - (1.8) 

<" ds R1 ~ ~ R1 as 

where u, and w are the displacements of the points of the middle surface with respect to the meridian 
and the outer normal, respectively. 

Transforming these expressions with the help of the third of them, we can eliminate the variables u 
and w and obtain the strain compatibility equation, for example, in the following form 

de~ , _  . c t g 0  O 
(1.9) 

If the strains are now expressed in terms of the internal forces, we obtain, using Eqs (1.6) and (1.7) 

e,, = - ~  - R2 + ~t'-~s - [-R22 + f ( s )  + ~tpR 2 + ~ T  a 

1 (  dV .ctgO, ,  ( 1 ~__~) ) 
e ,  = ~ - "~s + ~'-~2 v + ~t-~22 + f f s )  - p R  z + ctT a 

Substituting these expressions into Eq. (1.9) and performing the necessary reduction, we obtain the 
first differential equation for the two unknown functions V and O 

d2V 

ds 2 
c t g O d V  c tg2Ov ~"--~-v-EhO ~ - :  -~2 2 + - Ehot  + ~ ( s )  
R 2 ds R2 R1R2 -~2 

(1.10) 

(1.11) 

The function O(s) was obtained after rather complicated computations, in the course of which the 
following relations were derived and used 

d 2 ( R ~ ) ° 2 d p  d 1 c t g 0 ( l _ l ' ~  
~ss(pR2) = 2pRzctg0 1 -  + ,.2~s, ~Sl~ 2 = R2 k, Rt R2 j 

2 c t g 0  s" = - + : , ~ ( '  R2 
d f ( , )  pRzctg 0 ....~__l f ( ) ,  d(~_71 ~ ) =  +R-~l) 

(1.12) 

To derive the second equation, one has to use the equilibrium condition for the moments of all internal 
forces shown in Fig. 1 

dMm cos0. .  
-d-Ts + r (Mm-M~)-Qm = 0 (1.13) 

where Mm and M e are the bending moments, which may be expressed in terms of the function of the 
angles of rotation of the normal in bending 

M~ = - D (  do c t g O ~ ' ~  ( c t g O  , . d O ~  
Iv ds  + t.t--~-2 ~ )  + m,  M@ = - D "-~2 0 "r la-~s J + m 

h12 

D = Eh3 Eo~ I 2 ' m = T ( y , s ) y d y  
1 2 ( 1 - g  ) 1--~.l._h12 

(1.14) 
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.............. ..... !l-- 
Fig. 2 

Substituting expression (1.14) into the equilibrium equation (1.13), we obtain the second differen- 
tial equation for the two unknown functions 

d20 + ctgOdO ctg20 ~1, . V = 1 dm (1.15) 
ds 2 R 2 ds R70-R1R--"~201" DR 2 L)d---; 

If only the thermal stresses are being computed, then ~b(s) = 0 and the right-hand sides of the system 
just obtained are considerably simplified, while formulae (1.2) and (1.3) for computing the stresses 
become 

e a  . f c t g 0 , , .  E (dO i.tctg00)~ 
~rn(Y) = i - ' ~ ( T a - T ( Y ) ) * ~ - - ~ E ' * I _ l x 2 Y [ ' ~ s +  R2 )J (1.16) 

o~(y) = i-7-~(Ta- T(y)) + - ~ s  + ~_gzY[,--~-2 °+ ll"~s (1.17) 

This computational scheme was apparently first used by Meissner [5], but the derivation of the 
analogous differential equations involved the introduction of the angular coordinate 0, so that it is 
impossible to apply them to shells with conical and cylindrical sections. Boyarshinov [6, p. 402] derived 
the differential equations on the assumption that R1 = const. Here, no restrictions were imposed on 
the radii of curvature in deriving the differential equations. Consequently, they may be applied to 
composite shells of revolution of any shape. 

It has been shown in [6] that the necessary boundary conditions for the functions O and V can be 
obtained for all the main methods of attaching the edges of the shell, as well as the conditions for the 
rigid coupling of two shells. If the shell is closed at the vertex and is of constant thickness h, then at 
s = 0 necessarily O = 0, V = 0. 

Figure 2 illustrates a cusped shell with a supporting frame in the base. If the nose is massive, it must 
be isolated by a circumferential section with coordinate s = So, and a condition restricting the angles 
of rotation of the normal is imposed on the boundary at s = So; in addition, the circumferential strain 
of the shell must equal the thermal strain for equal temperatures of the shell and the massive nose at 
their common boundary 

dV ' c tg0"  ( 1  ~22) O = 0, ~ - ~ - - ~ - 2  v = ~ +  f ( s ) - p R  2 (1.18) 

For elastic interaction of the shell and the flame, the condition for their circumferential strains to 
be equal, and the equilibrium equation of the shearing forces of the shell and the circumferential forces 
of the flame must be satisfied. The latter can also be expressed in terms of the unknown functions 0 
and V. As a result, the boundary conditions at s = Ls, where L s is the length of the shell along the 
meridian, take the form 

I [ dV+ ctg0v~ 1 
0 = O, -E"h~-~s ~t W ) +O~Ta = £t+B V 

S S 

(1.19) 

where et is the thermal strain of the flee frame and S is its area of cross-section. 
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As obvious from conditions (1.19), the circumferential strain of the shell turns out to be equal to the 
strain of the free frame in the limiting case, when the stiffness B of the frame to expansion tends to 
infinity, while when et = 0 and B ---) oo boundary conditions (1.19) correspond to the conditions of a 
rigid fixed end. 

2. AN A L G O R I T H M  F O R  THE F I N I T E - D I F F E R E N C E  S O L U T I O N  
OF THE B O U N D A R Y - V A L U E  P R O B L E M  OF C O M P U T I N G  

THE STRESSES FOR A S H E L L  OF R E V O L U T I O N  IN THE CASE 
OF U N S T E A D Y  H E A T I N G  

The problems under consideration, of computing the thermal stresses for shells of revolution in the 
case of high-speed external heating, are of topical interest for the design of many mechanical engineering 
structures. In that connection one is justified in considering a fairly simple and effective method for 
their numerical solution, which is accessible for use over a broad range of engineering practice - first 
and foremost, a finite-difference matrix double-sweep method, whose possibilities are presented below. 

We introduce a dimensionless coordinate x along the arc of the meridian, dimensionless radii of 
curvature and new unknown functions F and Q of the same dimension in Ha 

s E A RI R2 12(1 - IX2)R2 
x = ~,  F = - ~ O ,  Q = V, rl = - i f ,  r2 = - ~ ,  ~ -  h 2 (2.1) 

where R is a constant with the dimensions of length. 
We represent the system of differential equations (1.10), (1.15) in vector-matrix form 

ctg0d~ c t g 2 0  dEll/+ + C~ = q (2.2) 
d x  2 r E dx r 

F [. C rlr2 r2 ql 1 dm dTa 
~ = Q i' = ~ Ix ' q = q2 , ql = hR d x '  q2 = Eo~ dx 

r 2 rl r 2 

A finite-difference analogue of this equation, using a standard three-point central difference scheme 
for the first and second derivatives, may be written as 

A-~k- l - B~k + A+~k + 1 ~ "  d, 

A ± 
[_1± 2r2(xk ) j[[ 0 1 

k = 2,3 . . . . .  N 

b+ II II B =  c- , d =  
c + b- d2 (2.3) 

(Ax)._.~2i r . 2~ . ~r2(xk)'~rl(Xk) ) '  c + = +(Ax) 2 d l =  ql(AX)2, d2 = q2(Ax)2 
b ± = 2 + r~(xk) lc tg  to k ± ~r2(Xk  ) ~ 

where k is the number of the nodal points along the meridian, the stepsize being Ax = l/N, l = Ls/R. 
The finite-difference equations (2.3) are written at all interior points, and two more equations are 

added for the boundary conditions at the boundary points with subscripts k = 1 and k = N + 1. The 
matrix coefficients of the internal equations are variables, occurring in which are the geometrical 
characteristics of the shell, which are computed for a given equation of the generator. The shape of 
the generator is usually given by an equation r = f(z) ,  where r is the radius and z is a coordinate, reckoned 
along the shell axis. Therefore, in order to compute the coefficients, one has to know the correspondence 
between the coordinates of a nodal point sg along the meridian and zk along the axis of revolution. In 
the general case this relation is established by a differential equation, the solution of which requires 
the solution of a Cauchy problem. In the simplest method for solving it, the coordinates zk are computed 
by the formula 

RAx 
zk = zk_l + , k = 2,3 . . . . .  N; zl = 0 (2.4) 

~/1 + (r ' (Zk_l))  2 
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qt + dqt 
q2 + dq2 

~) 

Z 

Fig. 3 

The boundary conditions in the general case have the form 

H1~'(0) + Glq/(0) = e 1, Hzqf(l)  + G2q/(l) = e 2 (2.5) 

where Hi, Gi and e i (i = 1, 2) are the coefficient matrices and vectors of the right-hand sides of the 
given boundary conditions. 

An approximation of the boundary conditions is introduced as follows: 

H(V2-WI ~ YE+V(~ ~--~tU+G2~N2¥N+I = e2 (2.6) lk -~  V O l ~  ) = e 1 , H2 vN 

The first boundary condition enables us to establish the relation between the vectors of the unknown 
functions at the first two nodal points 

q/1 = P lq /2+gl ,  P! = (2HI-GIAX)-I(2HI+GI Ax) 

gl = -2(2H1 - GlAx)-lel Ax 
(2.7) 

Using the relation obtained, the first internal equation can be transformed to the same form, then 
the second and so on, up to and including the last equation 

- !  + 
~lk = Pk~llk+l+gk, Pk = ( B - A - P k - I )  A 

gk = ( B - A - P k - l ) - l ( A - g k - l - d ) ;  k = 2,3 . . . . .  N 
(2.8) 

This procedure for computing the coefficients Pk of the transformed equations and vectors gk by the 
recurrence formulae (2.8) is known as the forward sweep. After it has been implemented, the vector 
~/U can be eliminated from the second boundary condition and the vector of unknown functions 
computed at the boundary 

q/N+ 1 = (2H2 + G2Ax- (2H2 - G2Ax)PN)-I(2e2 Ax + (2H2 - G2AX)gN) (2.9) 

Now, in the cycle of reverse sweep, the transformed equations (2.8) are used to compute the vectors 
of the unknown functions at all nodal points. The stresses are then computed. 

3. AN A L G O R I T H M  F O R  C O M P U T I N G  U N S T E A D Y  T E M P E R A T U R E  
F I E L D S  IN M E R I D I O N A L  S E C T I O N S  OF A S H E L L  

We will now consider the problem of computing axisymmetric temperature fields in a shell of revolution 
in the case of transient conditions of heat exchange at the outer and inner surfaces, varying in time and 
along the meridional coordinate s. For a coordinated computation of the temperature fields and thermal 
stresses, the heat-conduction equation should preferably be obtained in a curvilinear system of coordin- 
ates y, s, where y is the coordinate of the shell thickness directed along the outer normal, reckoned 
from the inner surface, and the coordinate s is directed along an arc of the meridian. 

The heat-conduction equation can be obtained from the thermal balance condition of the small 
element shown in Fig. 3, which is cut out from the shell by two meridional sections, two circumferential 
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surfaces and two equidistant surfaces. The equations of the equidistant surfaces may be represented 
as y = c and y = c + dy, where y = r - R2(z), r is the polar coordinate in a circumferential section of 
the shell, R2 is the radius of curvature of the interior surfaces, and dy is the distance between the surfaces 
and the thickness of the element. 

In Fig. 3, ql and q2 are the heat fluxes along the normal to the surfaces of the element and along an 
arc of the meridian s. The quantity of heat absorbed by the element in the time interval dt causes its 
temperature to change. Using Fourier's law of heat conduction, we can write this condition as an equation 

where 

{ - )~r+~ , (  OT 02Td ~(r+ 
~,~yy + ~)y2 Y) dy)(1 + RldY+ YJJ)ldcpdsdt+ 

{ O T  ~.(~T+~2TdsI( r )) OT +-~'-~s r+ ~Os Os 2 )k, +~s as d~dydt = cp'~'irdtpdsdydt 

O r - d R 2 - c t g O ( 1 - ~ )  

)~ is the thermal conductivity, c and p are the specific heat and density of the shell material, and 0 is 
the angle between the normal to the shell surface and the axis of revolution. 

Collecting like terms and omitting terms of the fifth order of smallness, we obtain the equation 

02T ( 1 + _ . _ E l  "~0T 02T c tg0 (1  R2~T cpOT 
~y 2 +  ~ R2+yJ~y+~s-"~+ R 2 + Y \  -gl lJ '~s  = ~, Ot 

(3.1) 

Attention must be drawn to the fact that the geometrical characteristics of the shell R1, R2 and 0, 
occurring in the coefficients of the equation just obtained, are determined, given the equation of the 
generator, as functions of the z coordinate, while the independent variable has been taken to be the s 
coordinate along an arc of the meridian. This does not introduce particular difficulties when one is solving 
the problem, and the z coordinate may be computed, for example, using formula (2.4). 

For a numerical solution of the problem one can use the method of component-wise splitting of a 
differential operator with respect to the coordinates [7, p. 289], according to which, at each time step 
At, two boundary-value problems for one-dimensional differential equations are solved in succession: 

cpTn+i/2_ Tn+(i-1)/2 Tn+il2+ Tn+(i-i)12 ~2 OJi(Z) 

~, At = Az 2 , i = 1, 2; A i = ~x~ + r(z, y)~x i 

( R2+ Y) ( R~212 ) 
to I = 1 + RI + yfl, 0) 2 = 1 - ctg0, x 1 = y, x 2 = s, r(z, y) = RE(Z ) + y 

(3.2) 

This method is quite natural in the context of heat-conduction problems, since it splits the heat flux 
process in a physical sense into two steps. The solution of the first differential equation corresponds 
to the propagation of heat in the direction of the Xl coordinate only, and the solution of the second 
corresponds to propagation in the x2 direction. Since these two processes are independent, it is very 
effective to separate the directions in this way. The method is still called the method of variable directions. 

In order to eliminate possible skew in the solution of the problem, due to the fact that the same 
equation (the first) is solved at each time step, we can introduce a double-cycled splitting scheme, 
subsequently changing the order of solution of the one-dimensional boundary-value problems (3.2) 
(n = 1,2 . . . . .  i =  1,2) 

T n+i/2 - T n +(i- 1)/2 2LAt +il2 . ,r,n+(i-1)/2), = Ai(T ~ . .  x = (3.3) 
x 2cp 

Tn + (i+ 2)/2 _ Tn + (i+ 1)/2 
= A3_i(Tn+(i+2)12 + Tn+(i+ 1)/2) (3.4) 

"C 
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Note that when the double-cycle scheme is used, there are two time steps for each index n. At the 
first step one solves Eqs (3.3) first with the operator A~ and then with the operator A 2. At the second 
step, Eqs (3.4) are solved, first with the operatorA2 for i = 1, and then, for i = 2, with the operatorAl. 
This alternation of two schemes excludes the possibility that either of the two equations will predominate. 

The core o f  the algorithm. The solution of the problem using the double-cycle splitting scheme involves, 
at each step of the computations, the solution of a one-dimensional boundary-value problem in four 
cycles; this may be represented in a generalized form as one standard finite-difference solution procedure 
using scalar double-sweep for a fairly simple differential equation 

0 

A ( u + u  °) - u - u  (3.5) 

where u ° is the solution computed at the previous step, u(x) is the solution sought at the next step, and 
A is a differential operator in one of two directions. 

Let us proceed to the finite-difference analogue of Eq. (3.5) 

Uk_ l -- 2Uk  + Uk + l ~ k U k  + l -- U k -  I 1 
+ Uk = q k '  ( ~ ) 2  r k 2Ax x 

k = 2 , 3  . . . . .  N 

0 0 0 0 0 / 
1 o Uk-l - -2Uk+Uk+l  ~Uk+l_--Uk-1 

qk = -- ~Uk -I Ax 2 -t rk 2Ax ) 

(3.6) 

where k is the number of the nodal points with coordinates xk = (k - 1)z~c (k = 1, 2 . . . . .  N + 1), 
Ax = I/N and l is the dimension of the given domain in one of the directions under consideration. The 
number of nodal points N + 1 in each direction may be specified in different ways. In the differential 
operators A1 and A 2 the coefficients Ilk are equal to 0h(zk) and 0~2(zk), respectively. 

The system of equations (3.6) results when the heat-conduction equation is written at all interior 
points. Each equation corresponds to the thermal balance condition for a layer of thickness At. Allowance 
has yet to be made for the specific heat of the two layers adjoining the boundaries, the thickness of 
each of which is Ax/2. Hence, the boundary conditions must be formulated allowing for the specific heat 
of these layers adjoining the boundaries. Let us consider, for example, the convective heat exchange 
condition on the outer surface of the shell, which, when the problem is solved analytically, at Xl = h 
has the form 

h,, 
_ ~_.7- + hw(x2, t)(Tw(x2 ' t) - u (h) )  = 0 

bx 
(3.7) 

where hw(x2, t) is the heat transfer coefficient and Tw(x2, t) is the temperature of the boundary layer of 
the environment; in the general case, both of these are functions of the meridional coordinate x2 and 
the time t. 

This condition means that the external and internal heat fluxes passing through the surface x = h 
are equal. When this condition is expressed in terms of finite differences, it must be taken into 
consideration that the external flux passes through the surface x = h, but the interior flux goes through 
the second surface of the adjoining layer x = h - ~c/2, and part of the heat is absorbed by the layer 
adjoining the boundary. Taking the specific heat of the boundary layer into account, Eq. (3.7), expressed 
in terms of finite differences, takes the form 

0 
--rUN+A 1 -- UN -- 3 U N +  1 + UN ZL, c + h w ( T w - u ~ + z )  = cpAxUN+3/42 Atu~v+3/4 '  u^t+3/4 - 4 (3.8) 

As a second example, let us write the condition of thermal insulation of the inner surface 

0 
~ u 2  - Ul = Cp~kXUl  + 1/4 -- Ul + 1/4 3Ul + U2 (3.9) 

& x  2 A t  ' Ul + 1/4 - 4 

Thus, the system of finite-difference equations (3.6), together with the boundary conditions, may be 
represented in the general case in the form 
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+ + 

Blu l  +Aiu2 dl A-kuk-I 1 .... - = - B k u  k + A  tu  k+ = dl,, k = 2, 3, N 

A~v+ luN-  B,v+ lu,v+ 1 = d,v+ 1 
(3.1o) 

where the coefficients of the inner equations are 

+ [3kAx 2cp(Ax) 2 
A k = 1 + - -  B k = 2 +  2r  k ' ~At ' dk = (Ax)Zqk (3.11) 

The coefficients of the boundary conditions depend on the parameters of the given heat exchange 
conditions. In examples (3.8) and (3.9) shown above 

3(Ax)2 + = A~v + = 1 (Ax)2, 
B I = 1 + 16-------~-' a l  l - 

dl ( A x ) 2 . , ~  0 0 

= - 1 6 x  t ~ u l  + u 2 )  

hwAx 
Blv+l = Bl+ ~ ,  dN+l 

( ~ ) 2  .,,., 0 0 hwAx 
= - 16X t'~uN+ 1 + u~,) - -----~-T w 

(3.12) 

The coefficient matrix of the system of algebraic equations (3.10) is tridiagonal, and the solution may 
be obtained by double-sweep. In the forward sweep cycle, all the inner equations are transformed to 
a two-term form 

u k = PkUk+l+gk,  k = 2,3 . . . . .  N (3.13) 

The first boundary condition yields P1 = AI/B1, gl = -dl/Bl,  while the coefficients of the inner equations 
are evaluated by recurrence formulae 

- 1  + _ - 1  _ 
Pk = (B~-A-kPk-1 )  Ak,  gk = ( B k - A k P k - 1 )  ( A k g k - l - d ) ,  k = 2,3 . . . .  , N  (3.14) 

After carrying out these transformations in the second boundary layer, we can eliminate u N = 

PNUN + I + gN and evaluate the temperature at the boundary 

dN+ 1 - A~v+ lgu 
us+ 1 = (3.15) 

A-u* 1P N - BU+ 1 

Then, using Eqs (3.13) in the reverse order, we can evaluate the temperature at all nodal points. 
In order to solve the problem as a whole, one has to represent the temperatures at the nodal points 

of the mesh as a two-dimensional array. At the beginning of the computation of this array T(I, J),  the 
values of the initial temperatures T o (i = 1, 2, . . . ,  N1 + 1;j = 1, 2, . . . ,  N2 + 1) are filled in. 

Next, in order to proceed to the next instant of time, the double-sweep procedure (3.13)-(3.15) is 
implemented with respect to the coordinate x = Xl for successive values o f j  = 2, 3 . . . . .  N2, and then 
with respect to the coordinate x2 for all successive values i -- 2, 3 . . . . .  N1. 

To clarify this account, we present the beginning of these computation in greater detail. 
We fixj = 2 and carry out the following operations: 
(1) transport one vector of the array T(I, J) to a one-dimensional Fourier array and write this condition 

in the form of an equation 

U(I) = T(I ,J) ,  J = 2, I = 1 , 2 , . . . , N  1 +  1 

(2) compute the coefficients Ai, Bi, Ci, d i by formulae (3.11) and (3.12) for i = 1, 2, ... , NI + 1; 
A x = A x  1. 

(3) using the standard procedure (3.13)-(3.15) to solve the one dimensional problem, compute the 
new temperature values ui of the vector U(/). Place the vector thus obtained in the two-dimensional 
array T at the position used in this procedure; in the present case it is the vector with indexj = 2 (the 
second column of the array). 

(4) change the indexj by one and repeat the computations described above, and so on up t o j  = N2. 
Now, continuing in analogous fashion, carry out sweeps with respect to the x2 coordinate. After 

sweeping along and across the array T, the temperature values will have been filled in at all the nodal 
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points, and thus one further time step will have been completed. Proceeding to the next instant of time, 
sweeps are carried out in reverse sequence - first with respect to x2 and then with respect to xl. As a 
result the whole time sequence consists of pairs of steps. 

It should be observed that sweeps according to the standard procedure (3.13)-(3.15) are only carried 
out for the interior coordinates of the curves, and therefore the temperatures at the nodal points are 
evaluated by extrapolating the temperature at adjacent points. 

We have thus presented algorithms for solving one class of transient boundary-value problems in 
thermoelasticity, which may find wide application in engineering practice for computing temperature 
fields and thermal stresses and for parametric optimization of composite shell structures. 

The possibility of extending scalar double-sweep to the method of matrix double-sweep along the 
lines of the scheme presented here was first published by the present author, as applied to the solution 
of stability problems for shells [2]. It should be observed that the method of matrix double-sweep is 
not always trivial. An investigation of the special features of the double-sweep method in solving problems 
of the stability of shells may be found, e.g. in [3]. Non-trivial situations for the application of matrix 
double-sweep also arise in the finite-difference approximation of boundary conditions when all the 
conditions at the boundary are given for one part of the vector of unknown functions, and at the other 
boundary for the other part of the vector, such as, e.g. in solving boundary-value problems for the 
equations of heat transfer by radiation, which must be taken into consideration when approximating 
differential equations by a difference scheme [4]. 
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